Scalp electrode impedance, infection risk, and EEG data quality.
نویسندگان
چکیده
OBJECTIVES Breaking the skin when applying scalp electroencephalographic (EEG) electrodes creates the risk of infection from blood-born pathogens such as HIV, Hepatitis-C, and Creutzfeldt-Jacob Disease. Modern engineering principles suggest that excellent EEG signals can be collected with high scalp impedance ( approximately 40 kOmega) without scalp abrasion. The present study was designed to evaluate the effect of electrode-scalp impedance on EEG data quality. METHODS The first section of the paper reviews electrophysiological recording with modern high input-impedance differential amplifiers and subject isolation, and explains how scalp-electrode impedance influences EEG signal amplitude and power line noise. The second section of the paper presents an experimental study of EEG data quality as a function of scalp-electrode impedance for the standard frequency bands in EEG and event-related potential (ERP) recordings and for 60 Hz noise. RESULTS There was no significant amplitude change in any EEG frequency bands as scalp-electrode impedance increased from less than 10 kOmega (abraded skin) to 40 kOmega (intact skin). 60 Hz was nearly independent of impedance mismatch, suggesting that capacitively coupled noise appearing differentially across mismatched electrode impedances did not contribute substantially to the observed 60 Hz noise levels. CONCLUSIONS With modern high input-impedance amplifiers and accurate digital filters for power line noise, high-quality EEG can be recorded without skin abrasion.
منابع مشابه
Factors limiting the application of electrical impedance tomography for identification of regional conductivity changes using scalp electrodes during epileptic seizures in humans.
Electrical impedance tomography (EIT) has the potential to produce images during epileptic seizures. This might improve the accuracy of the localization of epileptic foci in patients undergoing presurgical assessment for curative neurosurgery. It has already been shown that impedance increases by up to 22% during induced epileptic seizures in animal models, using cortical or implanted electrode...
متن کاملA first pilot study of Electrical Impedance Tomography with scalp electrodes during epileptic seizures in humans
Electrical Impedance Tomography (EIT) has the potential to produce images during epileptic seizures. This would improve the accuracy of the localization of epileptic foci in patients undergoing presurgical assessment for curative neurosurgery. It has already been shown that impedance increases by up to 22% during induced epileptic seizures in animal models, using cortical or implanted electrode...
متن کاملP300 Brain-Computer Interface Performance: A dry electrode study
Most brain-computer interfaces (BCI) are based on one of three types of electroencephalogram (EEG) signals: P300s, steady-state visually evoked potentials (SSVEP), and event-related desynchronization (ERD). EEG is typically recorded non-invasively using active or passive electrodes mounted on the human scalp. The common setup requires conductive electrode gel to get the best entrance impedance ...
متن کاملComparison of Dry and Gel Based Electrodes for P300 Brain–Computer Interfaces
Most brain-computer interfaces (BCIs) rely on one of three types of signals in the electroencephalogram (EEG): P300s, steady-state visually evoked potentials, and event-related desynchronization. EEG is typically recorded non-invasively with electrodes mounted on the human scalp using conductive electrode gel for optimal impedance and data quality. The use of electrode gel entails serious probl...
متن کاملSignal Quality in Dry Electrode EEG and the Relation to Skin-electrode Contact Impedance Magnitude
Current EEG research approaches are focusing on developing new dry electrode EEG (electroencephalogram) systems providing a high enough signal quality for a wide range of applications. This study proposes several parameters for evaluating signal quality of dry electrodes and relates the results to skin-electrode contact impedance magnitude values. The EEG recordings of a Ag/AgCl pinned electrod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology
دوره 112 3 شماره
صفحات -
تاریخ انتشار 2001